
Concept of digitization and sampling rate for cosine and voice

signals

 Nowadays we listen to music mostly from computers or handheld electronic devices

which save audio in digital format (ones and zeros). But our voice or the music in its natural

form cannot be saved in computer or digital media like pen drive, CD ROM etc. So how do we

save voice or music in the format of zeros and ones? What is the process involved in converting

voice into a series of ones and zeros? At the end of this experiment you‟ll understand this.

Aims of the experiment:

1. Discrete time representation of signals.

2. Sampling rate selection.

3. Effect of under sampling (aliasing).

4. Discretization of amplitude of signal (quantization).

5. Impact of bits per sample on signal shape.

Apparatus:

1. A PC installed with Scilab 5.5.0 or above.

2. A PC headset (containing headphone and microphone, 3.5 mm jack connector) – for

voice sampling and quantization.

Theory:

1. Sampling:

 This is the first step in converting the audio signal into digital signal. When we say

sampling in signal processing, we mean that we are converting a continuous time signal into a

discrete time signal. For example, in Fig. 1, the signal shown in green color is a continuous time

signal i.e. the signal is available without break in time domain. But the same signal when

sampled, as shown in red color in Fig. 1, has values only at certain points in time i.e. discrete in

time. These discrete points are called sample points and we have to choose the points

appropriately so that the discrete points when joined together form the original signal reliably.

The frequency with which these samples are taken from time domain is called sampling

frequency denoted as fs (samples/sec).

Figure 1 – Sampling a continuous time signal

 One main problem that stems when sampling the signal with inappropriate fs is

“aliasing”. When a sampled signal is interpolated (joining the sample points together), the

reconstructed signal may resemble a lower frequency signal if sampling frequency is not

properly chosen. An example of this is shown in Fig. 2 and 3. In fig. 3, blue color plot shows the

continuous time signal, red color plot shows the sampled discrete time signal and the black color

plot the reconstructed signal. The top left graph in fig. 3 shows the reconstruction from a

sampled signal with fs = 2fm. The reconstructed signal resembles a triangle but it gives the two

peaks (positive and negative peak of the cosine signal) completely, so we can reconstruct the

original continuous time signal. In the same fig. 3, top right graph shows the reconstruction of

sampled signal with fs = fm where we only get the positive peaks. When interpolating this signal,

we get a DC (direct current, zero Hertz frequency) component, whereas the original signal has 1

Hz frequency. This is called aliasing where 1 Hz signal appears as 0 Hz signal. One way to avoid

aliasing is to sample the signal with fs ≥ 2fm.

Figure 2 – Sampling a cosine signal of frequency fm=1 Hz with various sample frequency fs.

Figure 3 – Reconstruction of signal from sampled signal.

 We‟ve seen the sampling of a cosine signal. What do we do when we sample a signal that

has more than one cosine signal? How do we avoid aliasing in sampling composite signals? An

example is shown below. In eqn. (2), a composite signal with 1000 Hz and 3000 Hz frequency

component is shown. If we choose the sampling frequency fs = 2 x 1000 = 2000 (eqn. (3)), and

then convert the continuous time signal in eqn. (2) to discrete time signal by substituting t = nTs,

and then following the simple trigonometric identity in eqn. (8), we obtain eqn. (9) where the

1000 Hz signal appears as 5cos(πn) and the also the 3000 Hz appears as 6cos(πn). This is aliasing

where 3000 Hz signal appears as 1000 Hz signal. Appropriate selection of sampling frequency fs

rectifies the problem. Here we need to select fs ≥ 2 fm2 = 2 x 3000 = 6000.

 (1)

 (2)

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

 (9)

2. Quantization:

 In the previous sections we‟ve seen the process of converting continuous time signal into

discrete time signal through sampling. Now we‟ll see another process known as quantization. In

sampling process, we took the signal values at appropriate time points. Those signal values can

be ranging from -∞ to ∞ and it may take any value in between there extremes (even fractional

values). This is shown in fig. 4. The samples shown as red dots are sampled signal values. In the

same figure, quantization levels are shown by dotted gray line and we‟ll limit the signal value to

one of these levels. This is done because if we limit the number of levels in signal, we can index

the values (e.g. 0 to 7 in the fig. 4 shown as 000 to 111 in the y-axis) and this can be converted to

binary representation. If we increase the number of levels in y-axis, we also increase the number

of bits needed to represent the levels. Ultimately, it is these ones and zeros that gets saved in CD

ROM and pen drives that we hear as audio signal. If we observe the figures 6 to 8, we‟ll see that

as number of quantization levels is increased, the quantized signal closely follows the original

signal. This reduces the quantization error. As quantization error is reduced, the original signal

can be reconstructed with less error. This error in quantized signal sounds like noise and because

of this, it is otherwise called quantization noise. This is given as
 in table 1. A measure of

signal quality can be measured based on
 . This is SQNR (signal to quantization noise ratio)

and is calculated as,

SQNR =

 (10)

 Where, is the power of the cosine signal and
 is the mean square value of

quantization error.

Figure 4 – Quantization, process of discretizing values taken by signal.

Figure 5 – 8 level quantization of sinusoidal signal and its binary representation

Figure 6 – 8 level quantization of sinusoidal signal shown approximating the original signal.

Figure 7 – 16 level quantization of sinusoidal signal shown approximating the original signal.

Figure 8 – 32 level quantization of sinusoidal signal shown approximating the original signal.

Figure 9 – quantization error of 8 level quantized signal.

Useful Scilab functions:

1. cos(x) – Generates a cosine signal for the values in array „x‟. Output is also an array.

2. quantize(y,b) – Function for quantizing the values in array „y‟. „b‟ decides the number

of quantization levels.

3. mtlb_var(x,1,2) – Provides the mean square value of the zero mean signal „x‟.

4. sound(y,fs) – Plays the values of array „y‟ at sampling rate „fs‟ as audio.

5. wavread(“example.wav”) – Reads the audio in file “example.wav” and saves it in an

array. The input to this function is an audio file saved in “.wav” format.

6. intdec(y,ratio) – Down samples the signal in „y‟ by the ratio given in „ratio‟ where

ratio ≤ 1. Output of this function is down sampled array.

Procedure:

1. Sampling cosine signal:

1. In Scilab, generate a cosine signal of frequency fm with sampling frequency fs ≥ 2fm.

2. Take a specific number of bits per sample „bits_per_sample‟ and quantize the

generated sinusoidal signal with Scilab “quantize()” function.

3. Plot the original sinusoidal signal from step 1 and quantized sinusoidal signal from

step 2 in a single figure (overlay the plots).

4. Calculate the difference between the original signal from step 1 and the quantized

signal from step 2. This gives the quantization error. From quantization error, find the

root mean square (RMS) value using „mtlb_var()‟ function in Scilab.

5. Vary the number of bits per sample „bits_per_sample‟ and observe the effect of this

on the quantization error and the RMS value of quantization error.

6. Find the ratio of signal power of original cosine signal and the RMS value of

quantization error. This measure gives a figure of merit called Signal to Quantization

Noise Ratio (SQNR). Find the value of SQNR for different values of

„bits_per_sample‟.

2. Voice signal:

1. Record your voice using the microphone attached to the computer. Save the recorded

voice in „.wav‟ file format.

2. Open Scilab and by using the function „wavread()‟ from Scilab, read the file that

contains your voice. Save the output of „wavread()‟ command to an array named

‘voice’.

3. Select a sampling frequency „fs‟ and number of bits per sample „bits_per_sample‟.

4. Provide the sampling frequency „fs‟ and ‘voice’ values to Scilab‟s „intdec()‟ function.

Save the output of Scilab‟s „intdec()‟ function to a variable named „sampled_voice‟.

5. Now using Scilab‟s „quantize()‟ function, quantize the „sampled_voice‟ and save it in

„sampled_quantized_voice‟.

6. Using Scilab‟s „sound()‟ function, play the „sampled_quantized_voice‟.

7. Now calculate the difference between „sampled_voice‟ and

„sampled_quantized_voice‟. After this, find the RMS error value.

8. For various values of „fs‟ and „bits_per_sample‟, do the above procedure and observe

the voice quality and RMS error value.

Results and Calculation:

1. Cosine signal

a. Quantization noise:

Number of bits/sample
 (RMS error) SQNR (dB)

6

5

4

3

2. Voice signal

a. Quantization noise:

Number of bits/sample RMS error

8

6

4

3

Assignment

Concept of digitization and sampling rate for cosine and voice

signals

1. Find the appropriate sampling frequency for the following signals:

a. 𝑠𝑠(𝑡𝑡) = 𝐴𝐴𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜋𝜋)

b. 𝑠𝑠(𝑡𝑡) = 𝐴𝐴𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐(20𝜋𝜋𝜋𝜋)

c. 𝑠𝑠(𝑡𝑡) = 𝐴𝐴1𝑐𝑐𝑐𝑐𝑐𝑐(25𝜋𝜋𝜋𝜋) + 𝐴𝐴2𝑐𝑐𝑐𝑐𝑐𝑐(50𝜋𝜋𝜋𝜋)

d. 𝑠𝑠(𝑡𝑡) = ∑ 𝐴𝐴𝑚𝑚𝑐𝑐𝑐𝑐𝑐𝑐(2𝜋𝜋𝜋𝜋𝑚𝑚𝑡𝑡)4
𝑚𝑚=1 , where max(𝑓𝑓1, 𝑓𝑓2, 𝑓𝑓3, 𝑓𝑓4) = 𝑓𝑓3.

2. Generate a cosine signal of amplitude 𝐴𝐴𝑚𝑚 = 1, 𝑓𝑓𝑚𝑚 = 2000 𝐻𝐻𝐻𝐻. Change the sampling frequency

and observe the sound (see the table in lab manual).

3. Generate a cosine signal of amplitude 𝐴𝐴𝑚𝑚 = 1, 𝑓𝑓𝑚𝑚 = 10000 𝐻𝐻𝐻𝐻. Change the number of bits per

sample (bits_per_sample) and observe the sound (see the table in lab manual). What happened

when number of bits per sample is reduced?

4. Record your voice signal in the PC with Audacity and save it in .wav format. Change the sampling

frequency from 8000 samples per second (sps) to 1000 sps in steps of 1000 (see the table in lab

manual). What is the observation for reduced sampling frequency?

5. Repeat 4 now by varying bits per sample with sampling frequency 𝑓𝑓𝑠𝑠 = 8000 sps (see the table

in lab manual).

6. A signal is sampled with sampling frequency 𝑓𝑓𝑠𝑠 = 100 sps. That signal is available for a duration

of 2 sec. How many samples of the signal will be there in this duration?

7. 1024 samples of a signal are available. If sampling frequency 𝑓𝑓𝑠𝑠 = 100 sps, how may seconds the

signal will last? If we consider 𝑓𝑓𝑠𝑠 = 1024 sps, what is the new duration of the signal?

8. Variance of a signal 𝑥𝑥𝑖𝑖 is defined as 𝜎𝜎2 = (∑ (𝑥𝑥𝑖𝑖 − 𝑚𝑚)2𝑁𝑁
𝑖𝑖=1) 𝑁𝑁⁄ . Where 𝑚𝑚 is the average value of

𝑥𝑥𝑖𝑖 and 𝑁𝑁 is the length of the signal 𝑥𝑥𝑖𝑖 . 𝑥𝑥𝑖𝑖 is given in the below tabulation. Calculate the variance

of 𝑥𝑥𝑖𝑖 using the above formula in Scilab. Verify the result using mtlb_var(x,1,2) Scilab function.

𝑖𝑖 1 2 3 4 5 6 7 8 9 10

𝑥𝑥𝑖𝑖 11 55 29 20 55 99 96 100 97 97

Demo of

Concept of digitization and sampling rate for cosine and voice signals

This file gives the demo of how to do the sampling of cosine and voice signal. The softwares and

equipment required are:

1. Scilab 5.5.0.

2. Audacity.

3. Headphones with built-in microphone.

Steps involved in cosine signal sampling:

Step 1: Open Scilab 5.5.0 from the desktop.

Step 2: Open the files “test_sine.sce” and “quantize.sci” using the Scilab 5.5.0.

Step 3: Click on the “quantize.sci” function file in Scilab 5.5.0. Run the code for one time by
pressing “F5” function key or by pressing the “Save and execute” icon available in the Scilab as
shown below.

Step 4: Switch the tab to “test_sine.sce” file. Change the message frequency, sampling
frequency and bits per sample as desired using the variables shown below.

Step 5: Press “F5” or click “Save and execute” icon to run the code. Listen to the sound of the

sinusoidal signal you hear from Scilab. Go to the Scilab console window and note down the RMS

error as shown below. Also view the quantized signal plotted in the figure.

Step 6: Repeat Step 4 and Step 5 for various values of sampling frequencies and bits per sample

values (quantization experiment).

Steps involved in Voice recording and sampling:

Step 1: Open Scilab 5.5.0 from the desktop.

Step 2: Open the files “test_voice.sce” and “quantize.sci” using the Scilab 5.5.0 as shown below.

Step 3: Click on the “quantize.sci” function file in Scilab 5.5.0. Run the code for one time by
pressing “F5” function key or by pressing the “Save and execute” icon available in the Scilab as
shown below.

Step 4: Click on “Audacity” icon on the desktop to open “Audacity”.

Step 5: Connect your headphone with inbuilt microphone with the system by connecting

appropriate pins of the headphone and microphone into the system sockets.

Step 6: Go to audacity and record your voice for minimum of 8 seconds like shown in the below

figure.

Step 7: Stop recording your voice and check your recorded voice by playing it like shown below.

You should be able to hear your voice clearly while you play it. Otherwise record it again by

closing Audacity and following Step 6.

Step 8: Save your recorded voice by clicking on the “Export” option available in the “File” menu

item as shown below.

Step 9: Select the folder where you want to save the recorded voice as shown in the below

figure. The right side figure is the Scilab window. The left side one is Audacity “Export” page

dialog box.

Step 10: After selecting the folder, give your recorded voice a name. For example, “myvoice”.

Save the file in .wav format as shown below.

Step 11: Now go to Scilab software. Go to the “test_voice.sce” code file. Give the name of the

file you have saved in Step 10 here.

Step 12: Change the sampling frequency and bits per sample parameters in the scilab file as

shown below to your desired values.

Step 13: Press “F5” or click on “Save and execute” icon to run the code. Listen to you voice and

note down the RMS error that displayed in the Scilab console as shown below.

Step 14: Repeat Step 12 to Step 13 for different values of sampling frequency and bits per

sample values.

	Exp.5 Voice Sampling
	Exp.5 Voice Sampling Assignment
	Exp.5 Voice sampling demo

